

Figure\#1

Figure\#2

Let N, G be the mid-points of $A C$ and $A E$ respectively and O be the circumcentre of the given circumcircle of $\triangle A B C$.
$\therefore \underline{/ B}=\underline{/ A B C}=\frac{1}{2} / A O C=/$ AON. $--\# 3$
$A F \| O L$ as $A D$ and $O L$ are perpendicular to $B C$.
$A F=A G-G F=\frac{1}{2} A E-G F\{$ as G is mid - point of $A E\}=D F-G F\{$ given $\}=G D$.
Now, $O G D L$ is a rectangle as $O G \perp G D ; G D \perp D L ; D L \perp L O$, implies $G D=O L . \therefore A F=O L$.
$\therefore A F L O$ is a parallelogram implying $\boldsymbol{A O}=\boldsymbol{L F}$ and $\boldsymbol{A O} \| \boldsymbol{L F}$.
$L M=\frac{1}{2} A C$ and $L M \| A C$ by Mid-Point Theorem implying $\boldsymbol{L M}=\boldsymbol{A N} \operatorname{and} \boldsymbol{L} \boldsymbol{M} \| \boldsymbol{A N}$.
Suppose the lines $L_{1}, L_{2}, L_{3}, L_{4}$ are such that $L_{1} \| L_{2}$ and $L_{3} \| L_{4}$ but $L_{2} \nVdash L_{3}$, then the $\{$ acute or obtuse \} angle between L_{1} and L_{3} is same as \{acute or obtuse $\}$ angle between L_{2} and L_{4}.

So, angle between $A O$ and $A N$ equals angle between $L F$ and $L M$ as $A O \| L F$ and $A N \| L M$.
$\therefore \underline{/ O A N}=/ F L M$.
Now, in $\triangle O A N$ and $\triangle F L M$, we've
$\boldsymbol{O A}=\boldsymbol{F} \boldsymbol{L}$ (side), $\underline{\boldsymbol{O} \boldsymbol{A N}}=\underline{\boldsymbol{F} \boldsymbol{L M}}$ (angle), $\boldsymbol{A N}=\boldsymbol{L M}$ (side).
$\therefore \Delta \boldsymbol{O} \boldsymbol{A N} \cong \Delta \boldsymbol{F} \boldsymbol{L M}$ by SAS congruency and by c.p.c.t. $/ \boldsymbol{A O N}=/ \boldsymbol{L F M} .--\# 4$
From \#3 and \#4, we've $\underline{/ \boldsymbol{B}}=\underline{\boldsymbol{L F} \boldsymbol{L F}}$.

