

Let *N*, *G* be the mid-points of *AC* and *AE* respectively and *O* be the circumcentre of the given circumcircle of $\triangle ABC$.

 $\therefore \underline{/B} = \underline{/ABC} = \frac{1}{2}\underline{/AOC} = \underline{/AON}. - - \#3$

AF||OL as AD and OL are perpendicular toBC.

 $AF = AG - GF = \frac{1}{2}AE - GF\{as \ G \ is \ mid - point \ of \ AE\} = DF - GF \ \{given\} = GD.$

Now, *OGDL* is a rectangle as $OG \perp GD$; $GD \perp DL$; $DL \perp LO$, implies GD = OL. $\therefore AF = OL$.

: *AFLO* is a parallelogram implying AO = LF and AO || LF.

 $LM = \frac{1}{2}AC$ and LM||AC by Mid–Point Theorem implying LM = AN and LM||AN.

Suppose the lines L_1 , L_2 , L_3 , L_4 are such that $L_1||L_2$ and $L_3||L_4$ but $L_2 \not\parallel L_3$, then the {acute or obtuse} angle between L_1 and L_3 is same as {acute or obtuse} angle between L_2 and L_4 .

So, angle between AO and AN equals angle between LF and LM as AO||LF and AN||LM.

\therefore /OAN =/FLM.

Now, in $\triangle OAN$ and $\triangle FLM$, we've

OA = FL (side), /OAN = /FLM (angle), AN = LM (side).

 $\therefore \Delta OAN \cong \Delta FLM$ by SAS congruency and by c.p.c.t. AON = /LFM. - - - #4

From #3 and #4, we've $\underline{B} = \underline{LFM}$.